CALCULUS 1 COURSE (MATH2413) SYLLABUS FALL 2017,

SECTIONS 13,15,16

Instructor: Dr. Mikhail Bouniaev Telephone: (956)882-6600 Email: mikhail.bouniaev@utrgv.edu
Meeting location & times: According to the Schedule

The course Syllabus is subject to adjustment, depending on the progress of the class and not expected circumstances (like technical glitches at the Blackboards, etc.). The enhanced (and sometimes slightly adjusted) weekly schedule. Weekly assignments (Practice Sets Quizzes, if a Quiz is a part of homework assignment,) will be placed at the Blackboard for the current week by the end of each Monday. Please review it every Monday and make copy of the assigned Practice Set.

Since there is only one day between Tuesday and Thursday and Friday is a next day after Thursday you will have very limited time to do your reading, quizzes and practice sets. I strongly encourage students to do reading for the entire week over weekend according to the Calendar of Events that will be placed at the Blackboard at the

Section 13

<table>
<thead>
<tr>
<th>Type</th>
<th>Time</th>
<th>Days</th>
<th>Where</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>12:15 pm -</td>
<td>TR</td>
<td>LIFE & HEALTH SCIENCES #61 1.418</td>
<td>Aug 28, 2017 - Dec 14, 2017</td>
</tr>
<tr>
<td></td>
<td>1:30 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>12:15 pm -</td>
<td>F</td>
<td>LIFE & HEALTH SCIENCES #61 1.702</td>
<td>Aug 28, 2017 - Dec 14, 2017</td>
</tr>
<tr>
<td></td>
<td>1:05 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 15

<table>
<thead>
<tr>
<th>Scheduled Meeting Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Class</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Class</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Section 16

<table>
<thead>
<tr>
<th>Scheduled Meeting Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Class</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Class</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Office location & hours: LHSB2.508 Time TR 10:50 am-11:50am & 1:35PM-2:35PM (this time by appointment); F: 9:40am-10:40am (this time by appointment) & 1:30pm-2:30 pm

Textbook and/or Resource Material
Required: Open source textbook (Openstax) https://openstax.org/details/calculus-volume-1
You need to register as a student on this website. Even prior your registration you can either download PDF copy of the book or use web copy. You will also find some students’ supplementary materials on this website.
Supplementary

1. Please browse the internet and find video clips on the topic (for example, Khan Academy website). Watch video clips.
2. Any other textbook that allows students to achieve course/units objectives will work.

Calculator:
Students may use any basic calculator for classwork, homework, quiz, and tests. However, any calculator, including with built-in Computer Algebra Systems are not allowed for quizzes and tests/exams.

Pocket organizers, handheld or laptop computers, electronic writing pads or pen-input devices, and phones will not be permitted during quizzes and tests/exams.

Any above-mentioned devices are allowed to do homework problems (explain everything problems), however, students should write and submit detailed solution of the problem without referring to technology/devices. Though a device might be helpful for better understanding of the problem, students expect to learn how to solve the problem without calculator (except the basic calculator that mentioned in the first paragraph of the “Calculator” section.

Let me know if you have any questions about your calculator (or one that you are thinking of purchasing.)

Course Description and Prerequisites
Topics include limits, derivatives, applications, antiderivatives, and definite integrals of algebraic and transcendental functions. Applications of these topics will be emphasized. Prerequisites: MATH 2412 with a grade of ‘C’ or better; or passing the Pre-calculus Exemption Test administered by the Department of Mathematics.
4.000 Credit hours; 4.000 Lecture hours

Learning Objectives/Outcomes for the Calculus I Course
After completing this course, students will be able to:

1. Analyze and work with functions represented in a variety of ways: graphical, numerical, analytical, or verbal.
2. Demonstrate an understanding of the connections among these representations.
3. Demonstrate an understanding of the meaning of the limit and the relation with the graph of function.
4. Demonstrate an understanding of the meaning of the derivative in terms of a rate of change and local linear approximation.
5. Demonstrate knowledge of applying derivatives to solve a variety of real-world problems.
6. Demonstrate an understanding of the meaning of the definite integral as a limit of Riemann sums and using integrals to solve a variety of problems.
7. Demonstrate an understanding of the relationship between the derivative and the definite integral as expressed in both parts of the fundamental theorem of calculus.

Learning Objectives for Core Curriculum Requirements

- **CRITICAL THINKING (CT)** is a habit of mind characterized by the comprehensive exploration of issues, ideas, artifacts, and events before accepting or formulating an opinion or conclusion. Students will learn to approach calculus problems from an abstract perspective using multiple representations of problems — geometric and algebraic; quantitative and qualitative. Furthermore, a significant portion of the course will focus students on the application of mathematical concepts to aid in critical analysis of a variety of problems from other subjects and areas.

- **COMMUNICATION SKILLS (COM)** include the development, expression, and revision of ideas through the effective use of language (writing, reading, speaking, and listening) across a variety of forums. Communication involves learning to work in many genres and styles while using different technologies, can result in mixing texts, data, and/or images, and develops through diverse experiences across the curriculum. A strong focus of this course is to develop in students the ability to discuss mathematical ideas with fluency.
to both experts in mathematics and those with less experience. For many problems the process of the solution is as or more important than the solution itself, making communication a natural skill developed by the course. Communication skills can be achieved by assigning written homework, asking open-ended questions on tests or projects, working together in small groups, or assigning oral presentations.

- **EMPIRICAL AND QUANTITATIVE SKILLS (EQS),** which involve numeracy or quantitative reasoning, include competency in working with numerical data and mathematical reasoning. The course strongly centers on the empirical and quantitative skills objective, which permeates almost every topic included in the course and course objectives. These will be assessed through specific questions on the tests used in the course.

Attendance:

- Attendance for each full class is required. Do not schedule other activities or appointments during our class time. Anyone leaving class early, whether excused or unexcused, will be counted absent. The instructor has the prerogative to drop any student who has 3 or more unexcused absences or is habitually tardy.
- **Cell phones must be turned off and put away during lectures, and tests.**

GRADING POLICIES

There is no make-up work for any of the homework, practice sets, exams, CFU Quizzes, tests, and final exam.

Letter Grade on the percentage Scale: The course grade will be assigned according to the following percentage scale: A (90-100%), B (80-89%), C (70-79%), D (60-69%), F (below 60%).

Letter Grade on the Point Scale: The course grade will be assigned according to the following point scale: A (2700-3000), (2400-2699), C (2100-2399), D (1800-2099), F (below 1800).

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Number of Assignments</th>
<th>Each Assignment Worth</th>
<th>Total Points</th>
<th>Percent (rounded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFU Quiz</td>
<td>27</td>
<td>18</td>
<td>486</td>
<td>16%</td>
</tr>
<tr>
<td>Practice Set</td>
<td>28</td>
<td>20</td>
<td>560</td>
<td>19%</td>
</tr>
<tr>
<td>Exam 1</td>
<td>1</td>
<td>200</td>
<td>200</td>
<td>7%</td>
</tr>
<tr>
<td>Exam 2</td>
<td>1</td>
<td>540</td>
<td>540</td>
<td>18%</td>
</tr>
<tr>
<td>Exam 3</td>
<td>1</td>
<td>540</td>
<td>540</td>
<td>18%</td>
</tr>
<tr>
<td>End of Course Exam</td>
<td>674</td>
<td>674</td>
<td>674</td>
<td>22%</td>
</tr>
<tr>
<td>Total</td>
<td>3000</td>
<td></td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Course Activities

You will demonstrate your achievement of the course objectives by completing the types of activities as described below. With each activity, you will gain points, as described below, with maximum of 3000. Every week you will be able to check your progress at the Blackboard’s Grading Book.

You will complete the following kinds of activities as you work your way through the course:

Reading assignment Twice a week, you will have a reading assignment that you will find at the Blackboard’s section of weekly assignments. It is absolutely must that you do reading
before move to any other homework assignment and attend next class period. In most cases my lecture will corresponds well with the reading assignment, though it could be some adjustments. However just lecture (and/or placed at the blackboard Power Point Presentation) is not enough for your success in the class, you should do your reading assignment before you move to the next homework assignment.

Checks for Understanding (CFUs) are quiz-like questions with dynamic feedback that allow you and your Instructors to monitor your progress and understanding of key basic concepts. These concepts are foundational and crucial to your success in the calculus class. *You will receive 18 points for each CFU activity completed, totaling 486 points or 16% of your grade.*

CFU Quizzes will be based on materials discussed in the classroom and in reading assignment. They could either be in the classroom (next class after material has been discussed) with immediate feedback and self-grading, or part of the homework assignment in the Blackboard with automated feedback and immediate recording of your results.

You will have only one attempt to do a CFU Quiz!

If a CFU Quiz is not a part of your homework assignment, then you will have a CFU Quiz at the beginning of the next class period. Be prepared. No make-up work for a quiz.

Though each of the questions is designed to check your understanding of the basic concepts and does not require more than one minute to answer (if you read carefully the reading assignment) it worth many %-points in one assignment.

Practice Problems Sets (or just Practice Sets or Practice Problems) consist of problems that require step-by-step solutions, full explanations, and substantiation.

You can receive 20 points for each Practice Set for a total of 560 points or 19% of your total grade.

I expect you to explain each of the steps the way I will explain problems in the class and/or the way it is explained in reading assignment. **No retake of Practice Sets will be allowed**

Exams will be conducted after Modules 1, 2, and 3. You will take this exam in class (or at the Blackboard) and your instructor will provide instructions on how to submit it. *You may receive 200 points for Exam 1, 540 points for Exam 2 (18%), and 540 points for Exam 3 (18%). No retake of Course Exams will be allowed.*

End of Course Exams cover all the content in the mission, and are taken after you have successfully completed all of the activities in the course and reviewed what you have learned. You will take this exam in class. *You can earn up to 674 points on the exam or 22% of your total grade. No retake of the End of Course Exam will be allowed.*

Homework Submission (Important Information, Read Carefully)
Checks for Understanding (CFUs) if a CFU Quiz is a part of your homework assignment please do it after your reading assignment in the Blackboard. The results will be recorded automatically.

All CFU Quizzes should be done and submitted according to the schedule below

Section 13 Class on TH starts at 12:15 pm

<table>
<thead>
<tr>
<th>Day when a CFU Quiz was assigned</th>
<th>Day and time when CFU Quiz to be submitted through the Blackboard, if assigned as a homework (the system will be closed after that)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>Following Wednesday 9 PM</td>
</tr>
<tr>
<td>Thursday</td>
<td>Friday 12 PM</td>
</tr>
</tbody>
</table>

Section 15 Class on TH starts at 3:05 pm

<table>
<thead>
<tr>
<th>Day when a CFU Quiz was assigned</th>
<th>Day and time when CFU Quiz to be submitted through the Blackboard, if assignment as a homework (the system will be closed after that)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>Following Wednesday 11 pm</td>
</tr>
<tr>
<td>Thursday</td>
<td>Following Friday 3 pm</td>
</tr>
</tbody>
</table>

Section 16 Class on TH starts at 9:25 am

<table>
<thead>
<tr>
<th>Day when CFU assigned</th>
<th>Day and time when CFU Quiz to be submitted through the Blackboard, if assigned as a homework (the system will be closed after that)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>Following Wednesday 6 PM</td>
</tr>
<tr>
<td>Thursday</td>
<td>Following Friday 9 am</td>
</tr>
</tbody>
</table>

Practice Problems Sets (or just Practice Sets or Practice Problems)

The same Practice Problems Sets shall be submitted twice.

First Submission

Save on your computer placed at the Blackboard Weekly Schedule Section “Practice Problems Set” Template (that includes problems to solve for the current assignment). You fill in blank space with the solution (if you need more space extend it, this is a Word document). Show your best ability doing all problems. The first submission will be randomly reviewed and if instructor (or grader) notice that there is no solution (though we understand that some solutions could incomplete or even not correct) for any of the problems, it will be consider an act of scholastic dishonesty with the following actions to follow.

1. Three randomly selected previous “first submissions of Set Problems” will be reviewed. If in any of them similar discrepancies would be noticed (no solutions or written something that does not make a lot of sense instead of the solution), the score for all prior submitted Practice Set Problems will be zerroed.
2. This incident will be report as an act of academic dishonesty to the dean of students with the request to remove a student from the class.

After you complete solving problems, submit it as a PDF document to the Blackboard. According to the schedule below
Section 13 Class on TH starts at 12:15 pm

<table>
<thead>
<tr>
<th>Day when a CFU Quiz was assigned</th>
<th>Day and time when CFU Quiz to be submitted through the Blackboard, if assigned as a homework (the system will be closed after that)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>Following Wednesday 9 PM</td>
</tr>
<tr>
<td>Thursday</td>
<td>Friday 12 PM</td>
</tr>
</tbody>
</table>

Section 15 Class on TH starts at 3:05 pm

<table>
<thead>
<tr>
<th>Day when a CFU Quiz was assigned</th>
<th>Day and time when CFU Quiz to be submitted through the Blackboard, if assignment as a homework (the system will be closed after that)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>Following Wednesday 11 pm</td>
</tr>
<tr>
<td>Thursday</td>
<td>Following Friday 3 pm</td>
</tr>
</tbody>
</table>

Section 16 Class on TH starts at 9:25am

<table>
<thead>
<tr>
<th>Day when CFU assigned</th>
<th>Day and time when CFU Quiz to be submitted through the Blackboard, if assigned as a homework (the system will be closed after that)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>Following Wednesday 6 PM</td>
</tr>
<tr>
<td>Thursday</td>
<td>Following Friday 9 am</td>
</tr>
</tbody>
</table>

After submitting a First Submission of a Practice Problems Set as PDF scanned file (only as PDF, no pictures taking by phone or saved as a picture while scanning) you will receive automatically 10 points (50% of the entire assignment). Keep original of your work; you will need it for the second submission.

Please be advised that no taking by phone or tablet pictures will be accepted, only scanned and saved as a PDF document. The quality of a scan should be excellent-good and allowed to review the submitted document without ruining instructor’s eyes.

Second Submission of Practice Problems
Every Friday (with the exceptions of Fridays when we will have exams), we will discuss how to do two sets of Practice Problems for the week (that you have already submitted as a first submission). You will bring your original (the first submissions) of the Practice Sets.

Leave an extra space for the correct solution after your solution of the problem. Based on my explanation write on scratch paper a correct solution. Grade your own solution for the problem, based on my explanation. Amount of possible points for each problem will be assigned in the Practice Problem Template.
Use the following methodology for self-grading.
Your solution is the same as mine and you receive correct answer- 100% of the assigned points for the problem
Your solution is very close (some steps of explanations are missed) – 80% of the assigned problems
You had some ideas in the solution, but your solution is far from complete or/and accurate – 30% of the assigned for the problem points.

<table>
<thead>
<tr>
<th>Practice Set Discussed</th>
<th>What to submit</th>
<th>Day and time when a Second Submission of Practice Problems Set to be submitted through the Blackboard, (the system will be closed after that)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>1. Your original (first) submission of a Practice Problems set extended by nicely written correct solutions of all problems 2. In the comment write your score for the original (first) submission as you determined on Friday.</td>
<td>Following Saturday 11PM</td>
</tr>
</tbody>
</table>

Be aware that regardless of gained during second submission points, you will keep your original 10 points for the first submission, provided you honestly graded it on Friday.

Evident deviation of the grading will be considered as an act of academic dishonesty with the following actions to follow.

1. Three randomly selected previous “first submissions of Set Problems” will be reviewed. If in any of them a similar discrepancies would be noticed (unjustified generous grading, or absence of correct solutions of the problem), the score for all prior submitted Practice Set Problems will be zeroed.
2. This incident will be reported as an act of academic dishonesty to the dean of students with the request to remove a student from the class.

After you complete solving problems, submit it as a PDF document to the Blackboard. Accordng to the schedule above

CALENDAR OF EVENTS

Calendar of the University Activities
Include in this section a table or list that provides information for students regarding important dates, assignments or activities. The UTRGV academic calendar can be found at https://my.utrgv.edu/home at the bottom of the screen, prior to login. Some important dates for Fall 2017 include:
August 28 First day of classes
August 31 Last day to add a course or register for fall 2017
September 4 Labor Day – NO classes
November 15 Last day to drop a course; will count toward the 6-drop rule
November 23 – 26 Thanksgiving Holiday – NO classes
December 6 Last day of classes
December 7 Study Day – NO class
December 8-14 Fall 2017 Final Exams
December 15-16 Commencement Ceremonies

Note: Face-to-face days and times may vary.

Calendar of the Course Activities

Module 1 Limits and continuity

Week 1

Unit 1.1 Concept of Limit

Subunit 1.1.1 Limits, rate of change, and tangents to curves - Tuesday, August 29
Read section 2.1
Do Practice Set 1

Subunit 1.1.2 Limit of function, limit laws, one-sided limits - Thursday, August 31
Read section 2.2 pp137-147, section 2.3 pp 162-165.
Do Practice Set 2

Quiz 1

Module 1 Unit 1 Review - Friday September 1

Week 2

Unit 1.2 Finding limits and extending concept of limits

Subunit 1.2.1 Algebraic techniques for finding limits - Tuesday, September 5
Read section 2.3 pp 162-172
Do Practice Set 3

Subunit 1.2.2 Limits involving infinity; asymptotes of graphs - Thursday, September 7
Read section 2.2 pp.147-155; Section 4.6 pp. 412-429
• Infinite Limits & Limits at infinity
Do Practice Set 4

Quiz 2, 3

Unit 1.2 Review - Friday, September 8

Week 3

Unit 1.3 Trigonometric functions and continuity

Subunit 1.3.1 Limits of special trigonometric functions - Tuesday, September 12
Read section 2.3 The squeeze theorem (pp172-176),
Do Practice Set 5
Subunit 1.3. 2 Continuity - **Thursday, September 14**
Read section 2.4
Do Practice Set 6

Quiz 4,5

Exam 1 for Module 1 - Friday, September 15

Module 2 Differentiation

Week 4

Unit 2.1 Concept of derivative and basic rules of differentiation

Subunit 2.1.1 Definition of derivative - **Tuesday, September 19**
Read Section 3.1
Tangent lines
The derivative of a function at a point
Instantaneous rate of change
Read Section 3.2
Derivative function
Do Practice Set 7

Subunit 2.1.2 Differentiation rules; higher order derivatives - **Thursday, September 21**
Read Section 3.3 (The Whole Section)
Do Practice Set 8

Quiz 6, 7

Module 2 Unit 1 Review - **Friday September 22**

Week 5

Unit 2.2 Rules of differentiation

Subunit 2.2.1 Derivatives of trigonometric functions - **Tuesday, September 26**
Read Section 3.5
Derivatives of the Sine and Cosine Functions
Derivatives of Other Trigonometric Functions
Do Practice Set 9

Subunit 2.2.2 The chain rule - **Thursday, September 28**
Read Section 3.6 –whole Section
Do Practice Set 10

Quiz 8,9

Module 2 Unit 2 Review - **Friday, September 29**

Week 6

Unit 2.3 Derivatives of inverse functions

Subunit 2.3.1 Derivatives of exponential, logarithmic functions - **Tuesday, October 3**
Read Section 3.9 –Whole section
Do Practice Set 11
Subunit 2.3.2 Derivatives of inverse functions - **Thursday, October 5**
Read Section 3.7-Whole section
Do Practice Set 12

Quiz 10,11

Module 2 Unit 3 Review - **Friday, October 6**

Week 7

Unit 2.4 Implicit and logarithmic differentiations. Differentiability

Subunit 2.4.1 Implicit and logarithmic differentiations - **Tuesday, October 10**
Read Section 3.8-Whole Section
Read Section 3.9-Logarithmic Differentiation
Do Practice Set 13

Subunit 2.4.2 Differentiability, linearization, differentials - **Thursday, October 12**
Read Section 4.2 – Whole section
Do Practice Set 14

Quiz 12, 13

Module 2 Unit 4 Review - **Friday, October 13**

Week 8

Unit 2.5 Some concepts related to derivatives

Subunit 2.5.1 Tangent line, velocity, acceleration - **Tuesday, October 17**
Read Section 3.4 - all section
Read Section 3.8 – Finding the tangent line implicitly
Do Practice Set 15

Subunit 2.5.2 Related rates - **Thursday, October 19**
Read Section 4.1- whole section
Do Practice Set 16

Quiz 14, 15

Exam 2 for Module 2 - Friday, October 20

Week 9

Module 3 Applications of derivatives

Unit 3.1 Applying derivatives to analyze the graph of a function I

Subunit 3.1.1 Absolute and relative extreme values - **Tuesday, October 24**
Read Section 4.3 - Whole Section
Do Practice Set 17

Subunit 3.1.2 Rolle’s theorem, Lagrange’s (mean value) theorem - **Thursday, October 26**
Read Section 4.4 - Whole Section
Do Practice Set 18
Quiz 16, 17

Module 3 Unit 1 Review - Friday, October 27

Week 10
Unit 3.2 Applying derivatives to analyze the graph of a function II
 Subunit 3.2.1 Monotonic functions, the first derivative test - Tuesday, October 31
 Read Section 4.5 - The First Derivative Test
 Do Practice Set 19

 Subunit 3.2.2 Concavity; second derivatives tests - Thursday, November 2
 Read Section 4.5 – Concavity and Points of Inflection
 Read Section 4.5 – The Second Derivative Test;
 Read Section 4.6 Pages 429-440; Review Section 2.2 pp.147-155; Section 4.6 pp. 412-429
 Do Practice Set 20

Quiz 18,19

Module 3 Unit 2 Review and Graph Sketching - Friday, November 3

Week 11
Unit 3.3 Optimization. Indeterminate forms.
 Subunit 3.3.1 Optimization - Tuesday, November 7
 Read Section 4.7 - Whole section
 Do Practice Set 21

 Subunit 3.3.2 Indeterminate forms and L'Hopital's rule - Thursday, November 9
 Read Section 4.8 - Whole Section
 Do Practice Set 22

Quiz 20, 21

Exam 3 for Module 3 - Friday, November 10
Unit 3.4 of the Module 3 is not included into Exam3 and will be included to a full extend to the final exam.

Week 12
Unit 3.4 Antiderivatives
 Subunit 3.4.1 Antiderivative and Indefinite Integral - Tuesday, November 14
 Read Section 4.10 - Whole Section
 Do Practice Set 23

Module 4 Integration
Unit 4.1 Area and Definite Integral
 Subunit 4.1.1 Approximating Area. The Definite Integral - Thursday, November 16
 Read 5.1 - Whole Section.
 Read 5.2 - Whole Section
 Do Practice Set 24
Week 13

Subunit 4.1.2 The Fundamental Theorem of Calculus, I & II - **Tuesday, November 21**

Read 5.3 - Whole Section
Do Practice Set 25

Quiz 24

Thursday, November 23 - Thanksgiving Holidays

Friday, November 24 - Thanksgiving Holidays

Week 14

Unit 4.2 Net Change Theorem and Integration Techniques

Subunit 4.2.1 Integration Formulas and Net Change Theorem - **Tuesday, November 28**

Read 5.4 - Whole Section
Do Practice Set 26

Subunit 4.2.2 Substitution - **Thursday, November 30**

Read 5.5 - Whole Section
Do Practice Set 27

Quiz 25, 26

Module 4 Unit 2 Review - **Friday, December 1**

Week 14

Unit 4.3 Integrals Involved Various Functions - **Tuesday, December 5**

Read 5.6 Whole Section; Read 5.7 Whole Section
Do Practice Set 28

Quiz 27

Final Comprehensive Exam - December 8 - 14.

Exact day, location, and time will be announced (it is according to the UTRGV Fall 2017 Exams Schedule)

Other Course Information

The following are ways to get free help outside of class:

1. Contact me during my office hours or make appointment.
2. Contact me via email to ask questions regarding assignments.
3. Get free Math tutoring from:
 - Brownsville Campus: Visit the Math Tutoring Lab at SETB 1.408.
 - Brownsville Campus: Visit the Math and Natural Sciences Learning Center at Cavalry Hall; Phone number: (956) 882-7058, (956) 882-8208.
 - Edinburg Campus: Visit the Learning Assistance Center (LEAC) building in Room 114; Phone number: (956) 665-2532.
 - Edinburg Campus: Visit the Math Tutoring Lab located in the Math (MAGC) building, Room 1.106.
4. Hours: Main Office: 8 a.m.-5 p.m., Monday-Friday. Lab hours vary, please stop by or call your campus location for specific times.

UTRGV Policy Statements
The UTRGV disability accommodation, mandatory course evaluation statement and sexual harassment statement are required on all syllabi. Additional policy statements are optional, such as those covering attendance, academic integrity, and course drop policies.

STUDENTS WITH DISABILITIES: Required on all syllabi. Do not modify.
If you have a documented disability (physical, psychological, learning, or other disability which affects your academic performance) and would like to receive academic accommodations, please inform your instructor and contact Student Accessibility Services to schedule an appointment to initiate services. It is recommended that you schedule an appointment with Student Accessibility Services before classes start. However, accommodations can be provided at any time. Brownsville Campus: Student Accessibility Services is located in Cortez Hall Room 129 and can be contacted by phone at (956) 882-7374 (Voice) or via email at ability@utrgv.edu. Edinburg Campus: Student Accessibility Services is located in 108 University Center and can be contacted by phone at (956) 665-7005 (Voice), (956) 665-3840 (Fax), or via email at ability@utrgv.edu.

MANDATORY COURSE EVALUATION PERIOD: Required on all syllabi. Do not modify.
Students are required to complete an ONLINE evaluation of this course, accessed through your UTRGV account (http://my.utrgv.edu); you will be contacted through email with further instructions. Students who complete their evaluations will have priority access to their grades. Online evaluations will be available:

Oct 5 – Oct 12 for Module 1 courses
Dec 1 – Dec 7 for Module 2 courses
Nov 18 – Dec 8 for full fall semester courses

ATTENDANCE: Students are expected to attend all scheduled classes and may be dropped from the course for excessive absences. UTRGV’s attendance policy excuses students from attending class if they are participating in officially sponsored university activities, such as athletics; for observance of religious holy days; or for military service. Students should contact the instructor in advance of the excused absence and arrange to make up missed work or examinations.

SCHOLASTIC INTEGRITY: As members of a community dedicated to Honesty, Integrity and Respect, students are reminded that those who engage in scholastic dishonesty are subject to disciplinary penalties, including the possibility of failure in the course and expulsion from the University. Scholastic dishonesty includes but is not limited to: cheating, plagiarism, and collusion; submission for credit of any work or materials that are attributable in whole or in part to another person; taking an examination for another person; any act designed to give unfair advantage to a student; or the attempt to commit such acts. Since scholastic dishonesty harms the individual, all students and the integrity of the University, policies on scholastic dishonesty will be strictly enforced (Board of Regents Rules and Regulations and UTRGV Academic Integrity Guidelines). All scholastic dishonesty incidents will be reported to the Dean of Students.

SEXUAL HARASSMENT, DISCRIMINATION, and VIOLENCE: Required on all syllabi. Do not modify.
In accordance with UT System regulations, your instructor is a “responsible employee” for reporting purposes under Title IX regulations and so must report any instance, occurring during a student’s time in college, of sexual assault, stalking, dating violence, domestic violence, or sexual harassment about which she/he becomes aware during this course through writing, discussion, or personal disclosure. More information can be found at www.utrgv.edu/equity, including confidential resources available on campus. The faculty and staff of UTRGV actively strive to provide a learning, working, and living environment that promotes personal integrity, civility, and mutual respect in an environment free from sexual misconduct and discrimination.

COURSE DROPS: According to UTRGV policy, students may drop any class without penalty earning a grade of DR until the official drop date. Following that date, students must be assigned a letter grade and can no longer drop the class. Students considering dropping the class should be aware of the “3-peat rule” and the “6-drop” rule so they can recognize how dropped classes may affect their academic success. The 6-drop rule refers to Texas law that dictates that undergraduate students may not drop more than six courses during their undergraduate career. Courses dropped at other Texas public higher education institutions will count toward the six-course drop limit. The 3-peat rule refers to additional fees charged to students who take the same class for the third time.