Textbook and/or Resource Material

https://www.vitalsource.com/referral?term=9781119034414

Course Description and Prerequisites

This is an introductory course of fluid mechanics in formation of three credit lecture. The course covers topics of fluid mechanics fundamentals, fluid properties, flow classification, dimensions and unit, fluid statics, conservation of mass, momentum equation and its application, dimensional analysis, model similitude, and internal and external incompressible viscous flow including pipe flow and boundary layer. Prerequisites: MECE 2301* Statics AND MECE 3449* Mechanical Eng. Analysis I OR MATH 2415* Calculus III. *minimum grade of C.

Learning Objectives/Outcomes for the Course

Course Outcomes & Assessment: H - Homework; Q – Quiz; T – Test; F – Field trip; and P – Team project
1. Understand the fundamental concepts of velocity, stress field, and viscosity [H, Q, T]
2. Understand classification of fluid motions and dimension, and unit system [H, Q, T]
3. Demonstrate knowledge of the basic equation of fluid statics [H, Q, T]
4. Apply the basic equations for inertial control volume [H, Q, T]
5. Understand the differential analysis of fluid motion [H, Q, T]
6. Apply momentum equations for incompressible inviscid flow [H, Q, T]
7. Demonstrate knowledge of dimensional analysis and similitude [H, Q, T]
8. Understand the fundamentals of internal and external incompressible viscous flow [H, Q, T]

Learning Objectives for Core Curriculum Requirements

Texas Higher Education Coordinating Board (THECB) Outcomes associated with Civil Engineering Department Student Outcomes
- Critical Thinking Skills - an ability to identify, formulate, and solve engineering problems;
- Empirical and Quantitative Skills - an ability to apply knowledge of mathematics, science, and engineering; a knowledge of contemporary issues; an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
- Social Responsibility - an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

Grading Policies

<table>
<thead>
<tr>
<th>Category</th>
<th>Weight</th>
<th>Minimum</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>10%</td>
<td>100</td>
<td>A > 90</td>
</tr>
<tr>
<td>Quizzes</td>
<td>10%</td>
<td>89 ></td>
<td>B > 80</td>
</tr>
<tr>
<td>Midterm Exams (4)</td>
<td>60% (15% each)</td>
<td>79 ></td>
<td>C > 70</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
<td>69 ></td>
<td>D > 60</td>
</tr>
</tbody>
</table>

- Any student with more than 3 absences without pre-excuse will be dropped from the class.
- Unless otherwise informed, homework needs to be handed in within the first 5 minutes of the next day class. NO EXCEPTION on late submission.
Calendar of Activities
The UTRGV academic calendar can be found at http://my.utrgv.edu at the bottom of the screen.

Course Topics (tentative):

<table>
<thead>
<tr>
<th>Wk</th>
<th>Topics</th>
<th>Chapters Covered</th>
<th>Homework Due following Monday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>Chapter 1, Chapter 2</td>
<td>Problems 1.8, 1.21, 1.28, 2.2, 2.4, 2.16, 2.34, 2.54, & 2.56</td>
</tr>
<tr>
<td></td>
<td>Fundamental Concepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Midterm Exam 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fluid Statics</td>
<td>Chapter 3, Chapter 4</td>
<td>Problems 3.5, 3.17, 3.23, 3.45, 3.46, 4.26, 4.28, 4.30, 4.54, 4.79, & 4.87</td>
</tr>
<tr>
<td></td>
<td>Basic Equations in Integral Forms for a Control Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Midterm Exam 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Basic Equations in Integral Forms for a Control Volume</td>
<td>Chapter 4, Chapter 7</td>
<td>Problems 4.100, 4.103, 4.105, 7.8, 7.15, 7.27, 7.41, 7.57, & 7.71</td>
</tr>
<tr>
<td></td>
<td>Dimensional Analysis and Similitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Midterm Exam 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Incompressible Inviscid Flow</td>
<td>Chapter 6, Chapter 8</td>
<td>Problems 6.31, 6.35, 6.43, 6.56, 6.58, 6.68, 8.60, 8.62, & 8.90</td>
</tr>
<tr>
<td></td>
<td>Internal Incompressible Viscous Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Midterm Exam 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Internal Incompressible Viscous Flow</td>
<td>Chapter 8, Chapter 11</td>
<td>Problems 8.147, 8.149, 8.151, 11.2, 11.11, 11.12, 11.14, 11.15, & 11.24</td>
</tr>
<tr>
<td></td>
<td>Open Channel Flow Hydraulics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Exam 9:40-11:10 am (July 5, 2019)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Civil Engineering Student Outcomes

a. an ability to apply knowledge of mathematics, science, and engineering
b. an ability to design and conduct experiments, as well as to analyze and interpret data
c. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
d. an ability to function on multidisciplinary teams
e. an ability to identify, formulate, and solve engineering problems
f. an understanding of professional and ethical responsibility
g. an ability to communicate effectively
h. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
i. recognition of the need for, and an ability to engage in life-long learning
j. a knowledge of contemporary issues
k. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Contribution of Course Outcomes to Program Outcomes

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Civil Engineering Course Policies

Grades:
• Course grades will be based upon demonstrated understanding of course content.
• An understanding of prerequisite knowledge is assumed and will not be graded.
 o To be graded, student work must demonstrate retention, understanding and confidence in the exercising of prerequisite knowledge.
• At least 10% of the course grade will be attributed to participation; tardiness, alertness, disruptive conversation, web surfing, texting, working on homework, listening to music or any other behavior that does not contribute to course success may be penalized.

Attendance:
• Lecture, laboratory, quiz, exam and any other course related meetings are required.
• Students not attending course meetings and/or not turning in assignments will be dropped from the course by the instructor.

Homework:
• will be completed in a consistent format in all Civil Engineering courses;
 o The student's full name will be provided in the upper right corner of the first page.
 o The student's last name will be provided in the upper right corner of additional pages.
 o The page number and total number of pages will be shown in the upper right corner of the second and any additional pages.
 o Homework will not be stapled.
 o Only one side (the front side, binding holes on the left, heavily printed grid on the back) of the paper will be used.
 o Homework that is not legible will not be graded.
• will be turned in on time and at the beginning of lecture (first 6 minutes), when due at a lecture;
 o No late homework will be accepted for full credit.
 o Two assignments (maximum) per course may be submitted at the beginning of the following lecture for at most 50% credit.
• problems involving calculations will be completed on engineering paper;
 o Homework completed on paper from a spiral notebook will have any spiral perforations trimmed from the pages.
 o Engineering paper created using a watermark, title block and/or border may be printed.
 o Spreadsheet solutions will include algebraic equations and adequate notations to follow the development of the solution and facilitate checks with hand calculations.
• problem solutions will include the problem statement at the top of the problem followed by any data or other information given to solve the problem.
• Assumptions used to solve problems will be clearly identified.
• References to materials used to solve the problem will be provided, including (when used) solution manuals.
 o Solutions appearing to have been copied from a solution manual will not be graded.
 o Solutions will include detailed progression of calculations.
• Answers will be well identified (circled, boxed, underlined or highlighted) and will include units
• Completed homework solutions will be folded in half (4.25” x 11” when folded, typical) with the students full name written in the upper right corner of the back page.

Electronic Devices:
• During lectures, all electronic devices will be turned off and put away: cell phones, i Pods, PDA’s, etc. Electronic devices, including computers, may only be used to reference and/or support course materials, content and discussions.

Exams:
• Exams are to be taken at scheduled exam times.
• Academic dishonesty will not be tolerated.
 o When observed, cheating will result in a failing grade
 o Instances of cheating will be referred to the Dean of Students

• Exams will generally be taken with tables/desks cleared.
 o The use of calculator app’s on i-devices may be prohibited.
 ▪ Students should consider using an FE approved calculator.
 o No materials may be shared among students, including: calculators, erasers, pencils, paper, reference materials, etc.
 o Wandering eyes may constitute cheating; look at your paper or your calculator.

• Student will not be permitted to leave the classroom during lectures and exams except for extreme emergencies.

• Make-ups for in-class exams for extreme emergencies will be scheduled at the end of the semester.
UTRGV Policy Statements

STUDENTS WITH DISABILITIES:
If you have a documented disability (physical, psychological, learning, or other disability which affects your academic performance) and would like to receive academic accommodations, please inform your instructor and contact Student Accessibility Services to schedule an appointment to initiate services. It is recommended that you schedule an appointment with Student Accessibility Services before classes start. However, accommodations can be provided at any time. **Brownsville Campus:** Student Accessibility Services is located in Cortez Hall Room 129 and can be contacted by phone at (956) 882-7374 (Voice) or via email at ability@utrgv.edu. **Edinburg Campus:** Student Accessibility Services is located in 108 University Center and can be contacted by phone at (956) 665-7005 (Voice), (956) 665-3840 (Fax), or via email at ability@utrgv.edu.

MANDATORY COURSE EVALUATION PERIOD:
Students are required to complete an ONLINE evaluation of this course, accessed through your UTRGV account (http://my.utrgv.edu); you will be contacted through email with further instructions. Students who complete their evaluations will have priority access to their grades. Online evaluations will be available:

SCHOLASTIC INTEGRITY:
As members of a community dedicated to Honesty, Integrity and Respect, students are reminded that those who engage in scholastic dishonesty are subject to disciplinary penalties, including the possibility of failure in the course and expulsion from the University. Scholastic dishonesty includes but is not limited to: cheating, plagiarism, and collusion; submission for credit of any work or materials that are attributable in whole or in part to another person; taking an examination for another person; any act designed to give unfair advantage to a student; or the attempt to commit such acts. Since scholastic dishonesty harms the individual, all students and the integrity of the University, policies on scholastic dishonesty will be strictly enforced (Board of Regents Rules and Regulations and UTRGV Academic Integrity Guidelines). All scholastic dishonesty incidents will be reported to the Dean of Students.

SEXUAL HARASSMENT, DISCRIMINATION, and VIOLENCE:
In accordance with UT System regulations, your instructor is a “responsible employee” for reporting purposes under Title IX regulations and so must report any instance, occurring during a student’s time in college, of sexual assault, stalking, dating violence, domestic violence, or sexual harassment about which she/he becomes aware during this course through writing, discussion, or personal disclosure. More information can be found at www.utrgv.edu/equity, including confidential resources available on campus. The faculty and staff of UTRGV actively strive to provide a learning, working, and living environment that promotes personal integrity, civility, and mutual respect in an environment free from sexual misconduct and discrimination.

COURSE DROPS:
According to UTRGV policy, students may drop any class without penalty earning a grade of DR until the official drop date. Following that date, students must be assigned a letter grade and can no longer drop the class. Students considering dropping the class should be aware of the “3-peat rule” and the “6-drop” rule so they can recognize how dropped classes may affect their academic success. The 6-drop rule refers to Texas law that dictates that undergraduate students may not drop more than six courses during their undergraduate career. Courses dropped at other Texas public higher education institutions will count toward the six-course drop limit. The 3-peat rule refers to additional fees charged to students who take the same class for the third time.